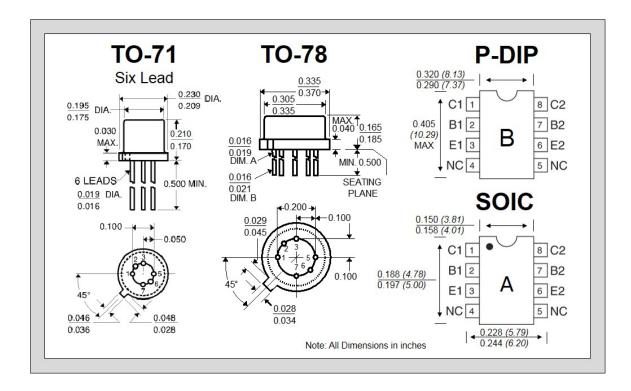


Improved Standard Products®

LS358

LOG CONFORMANCE MONOLITHIC DUAL PNP TRANSISTORS

FEATURES					
LOG CONFORMANCE	∆re ≤1Ω from ideal TYP.				
ABSOLUTE MAXIMUM RATINGS NOTE 1 (T _A = 25°C unless otherwise noted)					
Ic Collector-Current -10mA					
Maximum Temperatures					
Storage Temperature Range			-65°C to +150°C		
Operating Junction Temperature			-55°C to +150°C		
Maximum Power Dissipation	ONE S	SIDE	BOTH SIDES		
Device Dissipation T _A =25°C	250m	ıW	500mW		
Linear Derating Factor	2.3m	W/°C	4.3mW/°C		



ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	LS358		UNITS	CONDITIONS
Δre	Log Conformance	1.5		Ω	Ic = -10-100-1000μA
BV _{CBO}	Collector-Base Breakdown Voltage	-20	MIN.	V	$I_C = -10\mu A$ $I_E = 0A$
BV _{CEO}	Collector to Emitter Voltage	-20	MIN.	V	$I_C = -1mA$ $I_B = 0A$
BV _{EBO}	Emitter-Base Breakdown Voltage	-6.0	MIN.	V	$I_E = -10\mu A$ $I_C = 0A$ NOTE 2
BVcco	Collector to Collector Voltage	45	MIN.	V	$I_C = \pm 10 \mu A$, $I_B = I_E = 0 A$
h _{FE}	DC Current Gain	100	MIN.		$I_C = -10\mu A$ $V_{CE} = -5V$
		600	MAX.		
h _{FE}	DC Current Gain	100	MIN.		$I_{C} = -100 \mu A$ $V_{CE} = -5 V$
		600	MAX.		
h _{FE}	DC Current Gain	100	MIN.		Ic = -1mA
V _{CE} (SAT)	Collector Saturation Voltage	-0.5	MAX.	V	$I_C = -1mA$ $I_B = -0.1mA$
Ісво	Collector Cutoff Current	-0.2	MAX.	nA	I _E = 0A V _{CB} = -15V
I _{EBO}	Emitter Cutoff Current	-0.2	MAX.	nA	$I_C = 0A$ $V_{EB} = -3V$
Сово	Output Capacitance ⁴	2.0	MAX.	pF	$I_E = 0A$ $V_{CB} = -5V$
C _{C1C2}	Collector to Collector Capacitance ⁴	2.0	MAX.	pF	Vcc = 0V
I _{C1C2}	Collector to Collector Leakage Current	±0.5	MAX.	μΑ	$V_{CC} = \pm 45V$ $I_B = I_E = 0A$
f⊤	Current Gain Bandwidth Product⁴	200	MIN.	MHz	$I_C = -1 \text{mA}$ $V_{CE} = -5 \text{V}$
NF	Narrow Band Noise Figure ⁴	3.0	MAX.	dB	$I_C = -100 \mu A$ $V_{CE} = -5V$ $BW = 200 Hz$ $R_G = 10 K\Omega$ $f=1 KHz$

MATCHING CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	LS358		UNITS	CONDITIONS
V _{BE1} -V _{BE2}	Base Emitter Voltage Differential	0.4	TYP.	mV	$I_C = -10 \mu A$ $V_{CE} = -5V$
		1	MAX.	mV	
Δ (V _{BE1} -V _{BE2)} /°C	Base Emitter Voltage Differential ⁴	1	TYP.	μV/°C	$I_C = -10 \mu A$ $V_{CE} = -5V$
	Change with Temperature				$T_A = -55^{\circ}C$ to $+125^{\circ}C$
I _{B1} -I _{B2}	Base Current Differential	5	MAX.	nA	$I_C = -10 \mu A$ $V_{CE} = -5V$
Δ (I _{B1} -I _{B2}) /°C	Base Current Differential ⁴	0.5	TYP.	nA/°C	$I_C = -10 \mu A$ $V_{CE} = -5V$
	Change with Temperature				$T_A = -55^{\circ}C$ to $+125^{\circ}C$
h _{FE1} /h _{FE2}	DC Current Gain Differential	5	TYP.	%	$I_{C} = -10 \ \mu A$ $V_{CE} = -5 V$

NOTES:

- 1. These ratings are limiting values above which the serviceability of any semiconductor may be impaired.
- 2. The reverse base-to-emitter voltage must never exceed 6.0 volts; the reverse base-to-emitter current must never exceed 10 µA.
- 3. All MIN/TYP/MAX Limits are absolute values. Negative signs indicate electrical polarity only.
- 4. Not tested; guaranteed by design.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Linear Integrated Systems develops and produces the highest performance semiconductors of their kind in the industry. Linear Systems, founded in 1987, uses patented and proprietary processes and designs to create its high performance discrete semiconductors. Expertise brought to the company is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company founder John H. Hall.