LINEAR SYSTEMS

Over 30 Years of Quality Through Innovation

FEATURES	
ULTRA LOW NOISE	$e_n = 4.0 \text{ nV}/\sqrt{Hz}$
LOW INPUT CAPACITANCE	Ciss = 5pF
HIGH TRANSCONDUCTANCE	Gfs ≥ 4000µS

ABSOLUTE MAXIMUM RATINGS ¹ @ 25 °C (unless otherwise stated)					
Maximum Temperatures					
Storage Temperature	-55 to +150°C				
Junction Operating Temperature	-55 to +150°C				
Maximum Power Dissipation, TA = 25°C					
Continuous Power Dissipation, per side ⁴	250mW				
Power Dissipation, total ⁵	500mW				
Maximum Currents					
Gate Forward Current	$I_{G(F)} = 50 \text{mA}$				
Maximum Voltages					
Gate to Source	$V_{GSO} = 25V$				
Gate to Drain	$V_{GDO} = 25V$				

LSK589

LOW NOISE, LOW CAPACITANCE MONOLITHIC DUAL N-CHANNEL JFET

MATCHING CHARACTERISTICS @ 25°C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
$\left V_{GS1}-V_{GS2}\right $	Differential Gate to Source Cutoff Voltage			20	mV	V _{DS} = 10V, I _D = 5mA
IDSS1 IDSS2	Gate to Source Saturation Current Ratio	0.9		1.0		V _{DS} = 10V, V _{GS} = 0V (Note 2)
CMRR	COMMON MODE REJECTION RATIO -20 log ΔV _{GS1-2} /ΔV _{DS}	85			dB	$V_{DG} = 5V$ to 10V, $I_D = 5mA$

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
en	Noise Voltage		7		nV/√Hz	$V_{DS} = 10V, I_D = 5mA, f = 100Hz$
en	Noise Voltage		4		nV/√Hz	$V_{DS} = 10V, I_D = 5mA, f = 10kHz$
Ciss	Common Source Input Capacitance			5	pF	
C _{RSS}	Common Source Reverse Transfer Capacitance			1.2	pF	$V_{DS} = 10V, I_D = 5mA, f = 1MHz$

ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise stated)

SYMBOL	CHARACTERISTIC		MIN	TYP	MAX	UNITS	CONDITIONS
BV _{GSS}	Gate to Source Breakdown Voltage		-25			V	$V_{DS} = 0$, $I_D = 1\mu A$
V _{GS(OFF)}	Gate to Source Pinch-off Voltage		-1.5		-5	V	$V_{DS} = 10V, I_D = 1nA$
Vgs	Gate to Source Operating Voltage		-0.3		-4.0	V	$V_{DS} = 10V, I_D = 5mA$
IDSS	Drain to Source Saturatio	n Current	7.0		40	mA	$V_{DS} = 10V$, $V_{GS} = 0V$ (Note 2)
l _G	Gate Operating Current			-1	-50	pА	$V_{DG} = 10V, I_D = 5mA$
lgss	Gate to Source Leakage Current				-50	pА	$V_{gs} = -15V, V_{DS} = 0$
Gos	Output Conductance F = 1kHz				100	μS	$V_{DS} = 10V, I_D = 5mA$
NF	Noise Figure				1.0	dB	$V_{DS} = 10V, I_D = 5mA, R_G = 100K\Omega, f = 100Hz$
Gu	Forward	f = 1 kHz	4000		10000		
Ofs	Transconductance	<i>f</i> = 100MHz		7000		uS	$\sqrt{10}$ 10/($\ln - 5m$)
Gos	Output	f = 1 kHz			100	μΟ	$v_{DS} = 10 v$, $i_D = 5 mA$
GOS	Transconductance	f = 100 MHz		120			

PACKAGE DIMENSIONS

NOTES:

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse Test: PW ≤ 300 µs, Duty Cycle ≤ 3%
- 3. All MIN/TYP/MAX Limits are absolute values. Negative signs indicate electrical polarity only.
- 4. Derate 2.0 mW/°C above 25°C.
- 5. Derate 4 mW/°C above 25°C.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Linear Integrated Systems develops and produces the highest performance semiconductors of their kind in the industry. Linear Systems, founded in 1987, uses patented and proprietary processes and designs to create its high performance discrete semiconductors. Expertise brought to the company is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company founder John H. Hall.

Linear Integrated Systems